
Solid State Based on Class XII **CBSE**

Super Short Tricky Chemistry By Er. Jitendra Gupta Sir

Conceptual Notes for NEET/JEE/Boards

Table of Contents:

- Introduction
 - Properties of solids
 - Difference b/w Crystalline & Amorphous Solids
 - Classification of Crystalline Solids
 - London Force/ Dispersion Force
 - Dipole-Dipole Interaction 'or' Keesom Forces
 - Covalent or Network Solids
- Crystal Lattice & Unit Cell
 - Crystal Lattice / Space lattice
 - Geometry of Cube
 - Type of Unit Cell
- Crystal System & Bravais Lattice System
- Laws of Crystallography
 - Law of constancy of Symmetry
 - Miller Indices (Plane & Direction)
 - Length of Face diagonal & Cube diagonal
 - First three nearest neighbour distance for primitive cubic unit cell will be
- Cubic Closed Packing on Crystal
- Tetrahedral & Octahedral void
 - Location of Void
 - Relation b/w Void radius & Sphere radius
- Mathematics Analysis of Cubic Crystal
 - Packing fraction (P.F.) & Packing Efficiency (P.E)
 - Density of Cubic Crystal
 - Calculation of Ionic Radii 'or' relation b/w r & a
 - Limiting Radius Ratios & Structure
- Imperfection/Defects in Solid Transmission Of Givilization
- Packing in ionic solids
- Properties of solids
 - Magnetic properties, Dielectric Properties, Electrical Properties
- Solved Important Questions & MCQ

1.1 Properties of solids:

- (a) In solid state the particles are not able to move randomly.
- (b) They have definite shape and volume.
- (c) Solids have high density.
- (d) Solids have high and sharp melting point which depends on the
- (e) They are very low compressible.

1.2 Difference b/w Crystalline & Amorphous Solids :

strength or value of binding energy.

Anisotropy: Crystalline solids are anisotropic in nature, that is, some of their physical properties like electrical resistance or refractive index show different values when measured along different directions in the same crystals. This arises from different

1.

(f) They show very slow diffusion.

Is M.P of the solid.

(centre of mass)

Meting Point: is the temp. at which solid melts at 1 atm. Pr.

Molecular Motion: Ocellate about the mean position

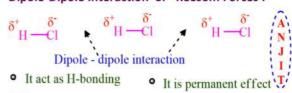
Property	Crystalline solids	Amorphous solids		
Shape	Definite characteristic geometrical shape	Irregular shape		
Melting point	Melt a sharp and characteristic temperature	Gradually soften over a range of temperature		
Cleavage property	When cut with a sharp edged tool, they split into two pieces are plain and smooth	When cut with a sharp edged tool, they cut into two pieces with irregular surfaces		
Heat of fusion	They have definite and characteristic value	They do not have definite value		
Anisotropy	Anisotropic in nature except cubic crystals	Isotropic in nature		
Nature	True solids	Pseudo solids or super cooled liquids		
Order in arrangement of consitituent particles	Long range order	Only short range order		
Law of Crystallography	Follows	Does not follow		
X-ray diffraction	Forms	Does not form		
Cooling curve	Cooling curve is not smooth Iiquid freezing solid	Cooling curve is smooth Anjit Academy		
Examples	NaCl, Diamond, MgO, CaF ₂ , Quartz, Red P.			

Note:

1. Glass are supercooled Liquid (due to viscosity)

Ionic compound generally forms solid. (KCI)

- NaCl (Rock Salt) do not conduct electricity, It conduct electricity only in molten or aqueous stage.
- 1.3 Classification of Crystalline Solids:


SN	Type of Crystal	Constituents Unit	Attractive Force	Example	M.P (K)	Physical Properties	Electrical Conductivity
1.	Molecular Solid Non-Polar Polar H-Bonding	Contains Molecules	London Force Dipole-Dipole Interaction	H ₂	Low Low	soft soft	Bad conductor Insulator
2.	Ionic Solid	lons (+ve & -ve)	H-bonding Electrostatic force of attraction 'or' Coulombic force	H₂O (ice) NaCl KCl	Low high	hard hard	NaCl (molten stage)
3.	Covalent 'or' Network solid	Atom	Covalent bonding	Diamond Graphite	4000 K soft	Hard soft	Insulator Conductor
4.	Metallic Solid	Atom (kernel: +ve charge are held together by free e- charge)	Metallic force	Cu Fe Ag	Fairly high 4800K	soft	Conduction

Note: 01. London Force/ Dispersion Force:

- Frizz London in 1930, developed a force b/w two Nonpolar molecules like- N2, O2, H2 or monoatomic gases like- He, Ne, Ar etc. Due to momentary dipole and Induced dipole.
- These force only suitable for short distance.
- Their energies are in range 1-10 kJ/mol

Example: Dispersion force Order: C₄H₁₀ > C₃H₈ > C₂H₆ > CH₄ b/coz bigger molecules easily polarised.

02. Dipole-Dipole Interaction or Keesom Forces:

Relative strength of four intermolecular forces is:

Ionic > H-Bond > Dipole-dipole > Vander waaals forces

- The forces develop b/w polar mol. like-HCl, NO2, SO2 etc
- Compound having difference E.N act as polar.

After Distortion

Momentary dipole

(Anjit Academy)

4th e move b/w two layers,

3D Network structure

Properties

Force / Nature

of diamond

154 pm

SN

1.

2.

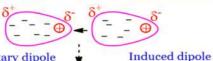
B.L

So Conduct Electricity

Electron Cloud distorted

2D Sheet Like-Structure of graphite

Graphite


Weak wander

Waal force of

attraction (soft).

Mohs scale = 1-

2 rating.

Force of attraction: London force

 ☐ It depends on Two factors:

1. Molecular Size:

Dispersion force ∞ Mol. mass ∞ B.P.

2. Molecular Geometry:

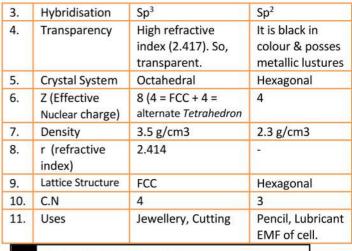
Dispersion force ∝ straight chain ∞ B.P

Diamond

Strong Covalent

Mohs scale = 10

rating. (to check


hardness of diamond)

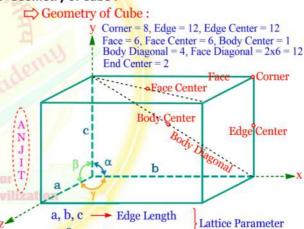
6

 $1/8 \times 8 = 1$

Bond (Hard).

1.4 Covalent or Network Solids: Covalent bonds are strong and directional in nature; therefore, atoms are held very strongly at their positions. Such solids are very hard and brittle.

Crystal Lattice & Unit Cell


2.1 Crystal Lattice / Space lattice:

The arrangement of constituents atom, ions and molecules in different sites in three dimensional space, with a long range order is called space lattice.

The following are characteristics of a crystal lattice:

- (a) Each point in a lattice is called lattice point or lattice site
- (b) Each point in a crystal lattice represents one constituent particle which may be an atom, a molecule or an ion.
- (c) Lattice points are joined by straight lines to bring out the geometry of the lattice.

2.2 Geometry of Cube:

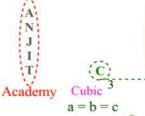
 α , β , γ \longrightarrow Angle b/w axis Note: Interfacial angles: Angle b/w the perpendiculars two intersecting faces called interfacial angles.

 $1/8 \times 8 + 6 \times 1/2 = 4$

 $1/8 \times 8 + 2 \times 1/2 = 2$

2.3 Type of Unit Cell:

154 pm 141.5 pm The smallest repeating unit in space lattice, Unit Cell which repeated again and again in different direction called unit cell. Primitive/Simple unit cells Centred unit cells J I Body-centred unit cells End-centred unit cells Face-centred unit cells T BCC FCC Academy Constituent particles Constituent particle Constituent particle present at the centre of any (atom, molecule or ion) two opposite faces are present Only on at the centre of each face, the corner positions at its body-centre besides besides the ones that besides the ones the ones that are at its corners. present at its corners. of a unit cell are at its corners. No. of Lattice: 8+6 8+2 8 + 11/2 = 50%1/2 = 50%Contribution of atom: 1/8 = 25%1 = 100%


C.N (Coordination . Number) is the number of nearest atoms (or ions) surrounding an atom (or iron) in a crystal lattice. Z (Effective no.

of Atoms) or No. of atom per unit cell $1/8 \times 8 + 1 \times 1 = 2$

These 14 Brayais lattices & 7 crystal system based on unit cell symmetry

SN	Crystal	No. of	Bravais	Example	Unit ce	ell parameters	Unit Cell
50 (0)	systems	B.L	lattices	May 10 11 15	Edge Length	Edge/Crystal angles	
1.	Cubic	3	SC, FCC, BCC	NaCl, KCl, Diamond, Cu, Ag, Au (G-11)	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	
2.	Rhombohedral Or Trigonal	1	Primitive (SC)	Calcite, Haematite (Fe ₂ O ₃), Quartz, As, Sb, Bi (G-15)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	
3.	Orthorhombic Or Rhombic	4	SC, FCC , BCC, End centre	BaSO ₄ , MgSO ₄ , <i>I</i> ₂ , S.	a≠b≠c	$\alpha = \beta = \gamma = 90^{\circ}$	
4.	Triclinic	1	Primitive	H ₃ BO ₃ , Na ₂ B ₄ O ₇	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	
5.	Monoclinic	2	Primitive , End centred	Na ₂ SO ₄ .10H ₂ O CaSO ₄ .2H ₂ O	a≠b≠c	$\alpha = \beta = 90^{\circ} \neq \gamma$	
6.	Tetragonal	2	SC, BCC	SnO ₂ , TiO ₂	a = b ≠ c	$\alpha = \beta = \gamma = 90^{\circ}$	
7.	Hexagonal	1	Primitive (SC)	Graphite, ZnO, ZnS	a = b ≠ c	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	

BaSO₄, MgSO₄, I₂, S

$$\alpha = \beta = \gamma = 90^{\circ}$$

 $\alpha \neq b \neq c$

Orthorhomic

Na₂SO₄.10H₂O, CaSO₄.2H₂O

$$\alpha = \gamma = 90^{0} \neq \beta$$

 $\alpha \neq b \neq c$
Monoclinic

Academy Cubic
$$a = b = c$$

 $\alpha = \beta = \gamma = 90^{0}$

Rhombohedral

$$a = b = c$$

 $\alpha = \beta = \gamma \neq 90^{0}$

Tetragonal

$$a = b \neq c$$

 $\alpha = \beta = \gamma = 90^{0}$

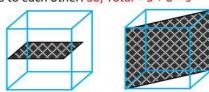
Hexagonal

$$\mathbf{a} = \mathbf{b} \neq \mathbf{c}$$

 $\alpha = \beta = 90^{\circ}, \gamma \neq 120^{\circ}$
Graphite, ZnO, ZnS

Centre of

symmetry


- NaCl, KCl, Diamond, G-11
- Calcite, Haemetite, G-15 ducating For SnO2, TiO2
- Match box has orthorhombic geometry Ice may give hexagonal or trigonal crystals
- Quartz may give hexagonal or trigonal crystals

Laws of Crystallography

4.1 Law of constancy of Symmetry:

A crystal possess following three types of symmetry -

Plane of symmetry: It is an imaginary plane which passes through the centre of a crystal and can divide it into two equal portions which are exactly the mirror images to each other. So, Total = 3 + 6 = 9

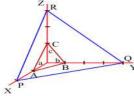
Face of cube / 2 = 3 Opposite edge / 2 = 6

2. Axis of symmetry:



- : Faces/2 + Coroners/2 + Edges /2 = 3 + 6 + 4 = 13
- 3. Centre of symmetry: It is a point in the crystal that any line drawn through it intersects the surface of the crystal at equal distance on either side. Hence, equal to = 1

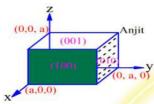
4.2 X-ray study of the crystal : Bragg's Law :


X - rays are electromagnetic waves of short wavelength and may be diffracted by suitable diffracting centres.

 $d \rightarrow \text{distance b/w two parallel } (\mathbf{d_{hkl}}) \text{ surface}$ $\theta \rightarrow$ Angle of deflection $\lambda \rightarrow$ wavelength, $n \rightarrow \text{no. of reflection 'or'}$ order of reflection

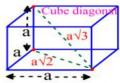
4.3 Miller Indices (Plane & Direction):

- It is used to calculate direction & plane of the crystal system by using h, k, l integer.
- $\frac{b}{Intercept \ on \ the \ x-axies}, k = \frac{b}{Intercept \ on \ the \ y-axies}$ Intercept on the z – axies

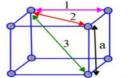


The distance between the parallel planes in a crystal are designated as dhkl for different cubic lattices these interplanar spacings are given by the following general formula as -

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$


where, a = length of the cube side & h,k,l = Miller indices of the plane

- Direction of miller indices → [hkl] Complete family → < hkl > Value → (hkl)
- Procedure:
 - 1. Intercept on the axis = x, y, z
 - Axis is parallel = ∞
 - take the reciprocal of fractional intercepts of its face on the various axes.


4.4 Length of Face diagonal & Cube diagonal:

- Distance b/w two adjacent Face centre = $a/\sqrt{2}$
- Distance b/w two adjacent edge centre = $a/\sqrt{2}$
- Length of face diagonal = $a\sqrt{2}$ (Anjit)
- Length of cube diagonal = $a\sqrt{3}$
- 4.5 First three nearest neighbour distance for primitive cubic unit cell will be: Nearest distance d = 2r

1st nearest distance : SC (a), BCC ($\frac{a\sqrt{3}}{2}$), FCC ($\frac{a}{\sqrt{2}}$)

- 1st nearest neighbour distance = a
- 2^{nd} nearest neighbour distance = $a\sqrt{2}$
- 3^{rd} nearest neighbour distance = $a\sqrt{3}$


Cubic Closed Packing on Crystal

- In crystal, the constituents' particles (sphere) are arranged, In such a way that arrangement have minimum energy & max
- For max. stability the constituent particle are surrounded by max. no of neighbour particles.

Packing of Constituents in Crystals

• 1 D - Close packing: are placed side by side in a row. Sphere are arranged in horizontal rows Only.

C.N = 2 In this arrangment, each spheres is in contact with two of its neighbours.

- sphere are arranged Horizontal & Vertical alignment and so on.
- In Hexagonal close packing arrangment is more
- dense (Stable) than square close packing (2D).

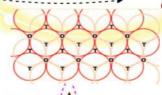
- Hexagonal close packing Stacking Pattern : ABABAB.....type arrangment
- In which the spheres in every second row are seated in the depression between the spheres of first row.
- In hexagonal close packing about 60.4% of available space is occupied by spheres

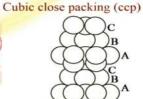
Square close packing Stacking Pattern: AAA.....type

Each sphere in this arrangement is in contact with four other spheres.

Occupies only 52.4% of the space by spheres.

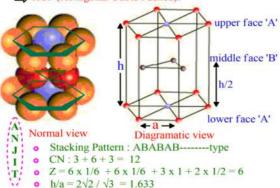

Hexagonal close packing (hcp)


3 D - Close packing:


11D+2D

is obtained by stacking 2D

layers one above the other.



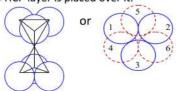
When the spheres in every layer is placed above only one type of voids (B or C) of previous layer, the spheres of every third layer lie strictly above the spheres of first layer. This arrangement if continued infinitely in the same sequence is represented as AB AB AB Academy

When the spheres are placed alternatively above the voids B and C type, then the spheres of every fourth layer lie strictly above the spheres of first layer. This arrangement, If continued infinitely in the same sequence, is represented as ABC ABC ABC This arrangement is exactly same as fcc.

HCP (Hexagonal Cubic Packed):

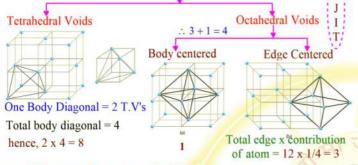
5.1 Tetrahedral void:

- (i) This type of void is formed when a triangular void of a hexagonal closed plane is covered by an atom of another atomic layer.
- In any closed packed structure each atom has two tetrahedral void.



5.2 Octahedral void:

- The unoccupied space surrounded by six atoms or ions is called octahedral void.
- (ii) In any closed packed structure each atom has one octahedral void.
- (iii) This type of void is obtained when triangular void of another layer of HCP layer is placed over it.

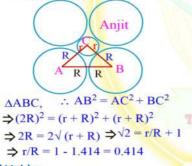


5.3 Location of void:

If constituents Particles = N then, Octahedral Voids = N
 And, No. of Tetrahedral Voids = 2N (Twice)

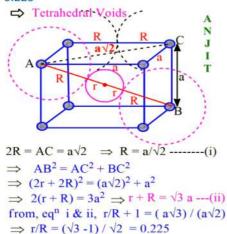
Locating Tetrahedral and Octahedral Voids

Let us take ccp / fcc (z = 4) structure and locate these voids in it. z = Effective no. of atom 'or' No. of atom per unit cell |



5.4 Relation b/w Void radius & Sphere radius:

- Octahedral Voids :
- Two equilateral triangle is formed b/w Six Sphere.

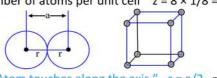

⇔ Octrahedral Voids

r/R = 0.414

2. Octahedral Voids:

- One equilateral triangle is formed b/w four Sphere.
- r/R = 0.225

6. Mathematics Analysis of Cubic Crystal

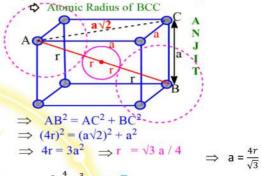

6.1 Packing fraction (P.F.) & Packing Efficiency (P.E): It is defined as ratio of the volume of the unit cell that is occupied by spheres of the unit cell to the total volume of the unit cell.

P.E =
$$\frac{Volume\ occupied\ by\ total\ no.of\ sphere}{Vol.\ of\ Unit\ Cell} \times 100$$

$$\Rightarrow PE = \frac{z \times \frac{4}{3}\pi r^3}{a^3} \times 100$$

(a) Simple cubic unit cell:

Number of atoms per unit cell $z = 8 \times 1/8 = 1$

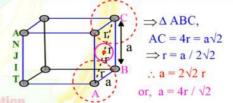

And, "Atom touches along the axis." $r = a/2 \implies a = 2r$

$$\therefore P.F = \frac{1 \times \frac{4}{3}\pi r^3}{(2r)^3} = 0.52 = \frac{\pi}{6}$$
 So, % P.F = 52.4 %

% of void 'or' Empty space = 100 - 52 = 47.6 %

(b) Body cantered cubic unit cell:

Number of atoms per unit cell $z = 8 \times 1/8 + 1 = 2$ And, "Atom touches along the body centre."


$$\therefore P.F = \frac{2 \times \frac{4}{3} \pi r^3}{(4r/\sqrt{3})^3} = \frac{\pi \sqrt{3}}{6} = 0.68 \text{ so, } P.E = 68 \%$$

% of void 'or' Empty space = 100 – 68 = 32 %

(c) Face centered cubic unit cell:

Number of atoms per unit cell z = 4

And, "Atom touches along the face centre."

$$\therefore P.F = \frac{4 \times \frac{4}{3} \pi r^3}{\left(\frac{4r}{10}\right)^3} = \frac{\pi \sqrt{2}}{6} = 0.74 \quad \text{'or' } \% P.F. = 74 \%$$

% of void 'or' empty space = 100 - 74 = 26 %

Note: Any Metal crystal in FCC/BCC/Sc arrange & surface adjacent atom along the edge of unit cell 'or' Interfacial separation (distance) b/w he atoms at the edge = a - 2r

6.2 Density of Cubic Crystal:

It is defined as the ratio of mass of unit cell to the total volume of unit cell.

$$d = \frac{m}{v} = \frac{mass \ per \ unit \ cell}{Volume \ of \ unit \ cell} = \frac{Z \times Mol. \ mass}{N_A \times volume \ of \ unit \ cell}$$

$$\therefore \ d = \frac{z \times M}{a^3 \times N_A} \quad \text{g/cm}^3 \quad \text{or} \quad \text{Kg/m}^3$$

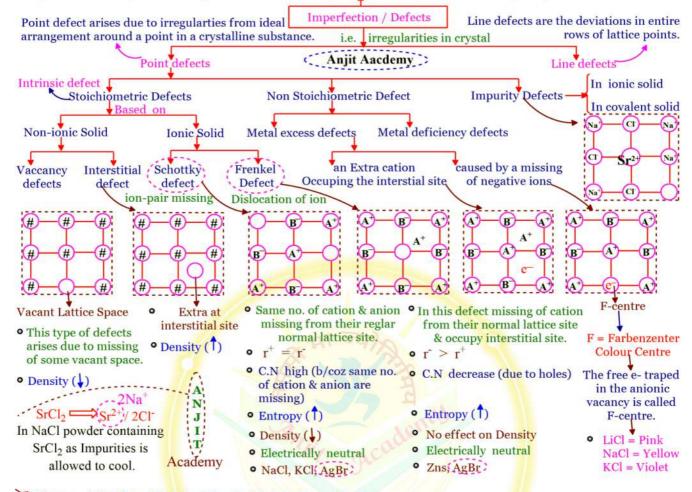
Where, $Z \rightarrow$ is the number of atoms per unit cell $N_A \rightarrow$ is the Avogadro number.

a → edge length / distance / unit cell length

6.3 Calculation of Ionic Radii or relation b/w r & a:

(a) NaCl Crystal = FCC Lattice : $a = 2 (r_{Na^+} + r_{Cl^-})$ or

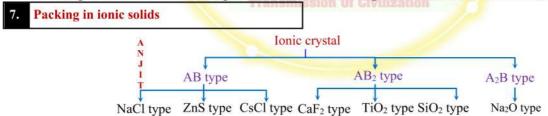
$$a = 2 (r_{Na^+} + r_{Cl^-})$$
 or $r_c + r_a = \frac{a}{2} (no. of nearest distance)$


$$a\sqrt{3} = 2 (r_{cS^+} + r_{cl^-})$$
 or $r_c + r_a = \frac{a\sqrt{3}}{2}$

6.4 Limiting Radius Ratios (R.R) & Structure:

$R.R = (r^+) / (r^-)$	C.N	Shape	Crystal	Ex.
< 0.155	2	Linear	150	-
0.155 - 0.225	3	Trigonal	-	B_2O_3
0.225 - 0.414	4	Tetrahedral	FCC/CCP	ZnS

7	Imperfection	/Defe	ets in Solid		
	0.732 – 1	8	Cubic	ВСС	CsCi
0	.414 – 0.732	6	Octahedral	FCC	NaCl


Imperfection in a crystal is the departure of constituent particles of the system from its regular position in the lattice.

Note: AgBr Show Schottky & Frankel defects both, Why?

- Schottky defect is observed in crystal High C.N and cation & anion have similar size.
- Frekel defect is observed in those crystal whose there is large difference in size of cation & anion.

As, Ag⁺ is small in size & Cl⁻ is large in size which result in large difference in size of ions & also highly ionic.

Description 'or' Arrangement of ions	C.N	Z	
CCP: Cl ⁻ ions in C.C.P, Na ⁺ ions occupy edge centre + body centre (all the octahedral voids.)	Na ⁺ − 6 Cl ⁻ − 6	4	Na ⁺ Cl Octahedral void filled
BCC : Cl ⁻ ions bcc arrangement the	6:6 Cs+-8	1	by Na Sodium chloride (NaCl
corner of a cube and Cs ⁺ ions in the body centre 'or' Vice versa.	∴ C. N Ratio		
	CCP: Cl ⁻ ions in C.C.P, Na ⁺ ions occupy edge centre + body centre (all the octahedral voids.) BCC: Cl ⁻ ions bcc arrangement the corner of a cube and Cs ⁺ ions in the body	CCP : Cl $^-$ ions in C.C.P, Na $^+$ ions occupy edge centre + body centre (all the octahedral voids.)	CCP : Cl $^-$ ions in C.C.P, Na $^+$ ions occupy edge centre + body centre (all the octahedral voids.) $ \begin{array}{c} \text{Na}^+ - 6 \\ \text{Cl}^ 6 \end{array} $ $ \begin{array}{c} \text{C. N Ratio} \\ 6:6 \end{array} $ BCC : Cl $^-$ ions bcc arrangement the corner of a cube and Cs $^+$ ions in the body centre 'or' Vice versa. $ \begin{array}{c} \text{C. N Ratio} \\ \text{Cl}^ 8 \end{array} $

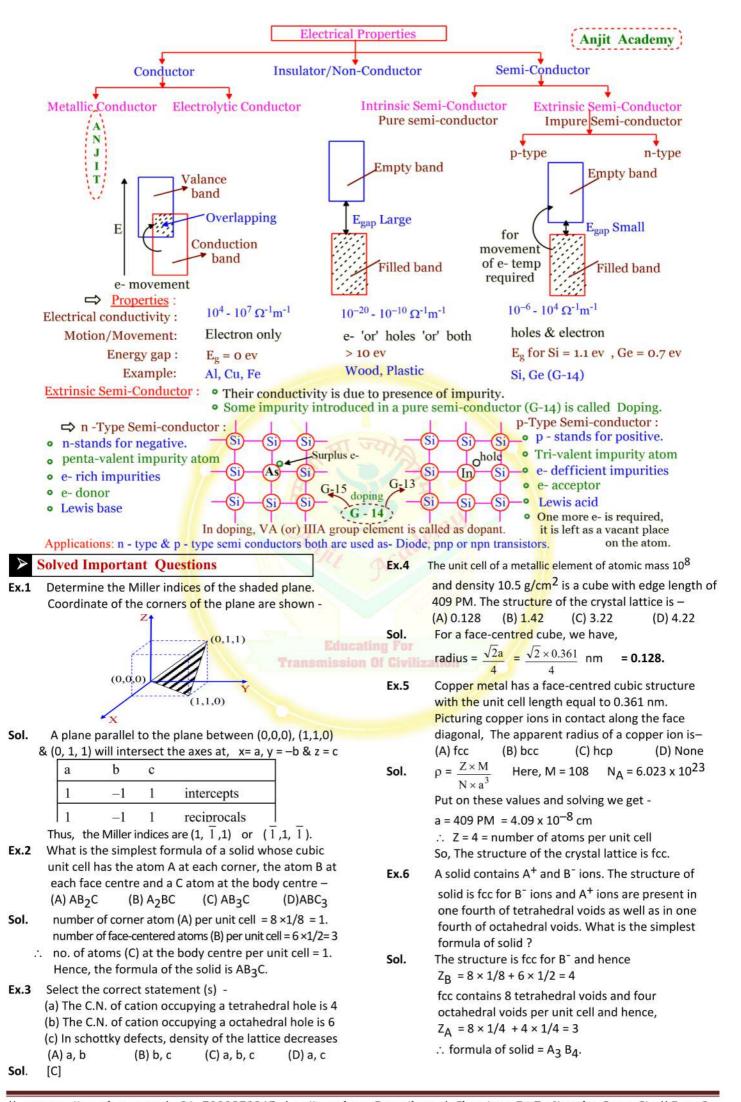
(ZnS)	occupy alternate tetrahedral voids i.e. only half of the total number of tetrahedral voids are occupied	$Zn^{+2} - 4$ $S^{-2} - 4$ \therefore C. N Ratio	4	2 01
4. Fluorite Struct. (CaF ₂ – type)	CCP: Ca ⁺² ions (+ve ions) in C.C.P. & F ⁻ ions (-ve ions) in <i>all the tetrahedral voids</i> .	4:4 Ca ⁺² – 8 F ⁻ – 4	4	Zinc blende (Zns) Tetrahedral voi filled by Zn ²⁺ Anjit
5. Anti-flurote	CCD : R ²⁻ Nogative ions in CCD & Positive	∴ C. N Ratio 8 : 4 Na ⁺ – 4	4	CaF ₂
Structure	CCP: B ²⁻ Negative ions in CCP & Positive ions A ⁺ in half tetrahedral voids.	O ⁻² − 8 ∴ C. N Ratio 4:8	4	Note: Rutile Structure (TiO ₂): O ²⁻ : Forming HCP Ti ⁴⁺ : ½ of Octahedral voids

Compound Prop.	НСР	CCP/FCC	BCC
Arrangment of packing	Close packed	Close	Not close packed
Type of packing	ABAB	ABCABC	ABAB A
Space occupied	74%	74%	68% N
C.N	12	12	8 1
Effective no. of atoms (z)	6 वा ज्य	A 4	2 T
Example	G-3, 4, 12 & Be, Mg	G-9,10,11 & Inert gas (Except He, Al)	G-1, 5, 6 & Ba, Fe
Effect of Temprature	& Pressure on C.N. :		Anjit Academy
Pressure $(\uparrow) \longrightarrow C.N (\uparrow)$	& Temprature (†) —	C.N(\dagger) NaCl =	Pr.(†) CsCl
		C.N = 6:6	T(1) C.N = 8:8

8. Properties of solids

8.1 Magnetic properties:

- (a) Diamagnetic Material:
- (i) Materials which are weakly repelled by magnetic fields.
- (ii) They contains paired electrons.
- (iii) Even no. of e- Except: 10 & 16e-.
- (iv) Examples of D.M are C₆H₆, NaCl, S, ZnO, V₂O₅, TiO₂ etc.
- (b) Paramagnetic material:
- (i) Materials which are attracted by the magnetic field.
- (ii) They always contain unpaired electrons.
- (iii) In this material magnetic dipole tend to orient themselves parallel to the direction of the field and thus produce magnetization in the substance.
- (iv) Odd no. of e- with 10 & 16 e-.
- (v) Examples : O₂, Cu⁺⁺, Fe⁺², Fe⁺³, Cr⁺³, CuO, NiO, Ti₂O₃ etc
- (c) Ferromagnetic material:
- Which are strongly attracted by magnetic lines of forces so, net magnetic moment not equal to zero.
- (ii) Ferromagnetism is due to spontaneous alignment of the magnetic dipole in the same direction.
- (iii) Each ferromagnetic material losses its magnetic character above a critical temp. This temp is called the curie temperature.
- (iv) They contain a number of unpaired electrons
- (v) Examples of these materials are Fe, Co, Ni etc.
- (d) Anti-ferromagnetic materials:


- (i) These are the materials, in which alignment of the dipole equal & opposite direction so as to give zero net dipole moment.
- ii) MnO, FeO is the example of antiferromagnetic material.
- (d) Ferrimagnetic materials: These are the material in which dipoles are oriented in parallel and antiparallel direction in unequal numbers, so that there is a net magnetic moment. Ex.- Fe₃O₄, MgFe₂O₄, NiFe₂O₄ etc.
- AB₂O₄ Type : ----- ferrite.

8.2 Dielectric Properties:

- (1) Piezo electricity:
- (i) When a polar crystal is subjected to a mechanical stress, electricity is produced. The electricity so produced is called piezo electricity.
- (ii) If an electric field is applied to a crystal, a mechanical stress is developed in the crystal. Thus, a piezo electric crystal acts as a mechanical-electrical transducer. Example: Lead Zirconate (PbZrO₃)
- (2) Pyro electricity: Those materials which can produce small electric current. This phenomenon is termed as pyro electric effect. The electricity so produced is termed a pyro electricity.

8.3 Electrical Properties:

Multiple Choice Questions

- Q.7 In a solid AB having the NaCl structure, A atoms occupy the corners of the cubic unit cell. If all the face centered atoms along one of the axes are removed, then the resultant stoichiometry of the solid is
 - (A) AB₂
- (B) A₂B
- (C) A_4B_3
- (D) A_3B_4
- Q.8 A substance A_XB_y crystallizes in a face centered cubic (FCC) lattice in which atoms 'A' occupy each corner of the cube and atoms 'B' occupy the centres of each face of the cube. Identify the correct composition of the substance A_XB_y
 - $(A) AB_3$
- (B) A_4B_3
- (C) A₃B
- (D) Composition can't be specified
- Q.9 Alternate tetrahedral void in FCC are occupied in (A) NaCl (B) ZnS (C) CaF₂ (D) Na₂O
- Q.10 The correct statement(s) regarding defects in solids is(are) -
- (A) Frenkel defect is usually favoured by a very small difference in the size of cation and anion
 - (B) Frenkel defect is a dislocation defect
 - (C) Trapping of an electron in the lattice leads to the formation of F-center
 - (D) Schottky defects have no effect on the physical properties of solids
- Q.11 The packing efficiency of the two-dimensional square unit cell shown below is -

(A) 39.27 % (B) 68.02%

- (C) 74.05% (D) 78.54%
- Q.12 For an element of FCC crystal lattice having edge length 400 pm, calculate the maximum diameter of an atom which can be placed in interstitial site so that the structure remain same.
- Q.13 For a cubical system the following information are available. Edge length = 5Å; density = 2 gm/cm³, Atomic wt. = 75
 - Determine the radius of the atom in pm?
- Q.14 Match the crystal system/unit cells mentioned in Column-I with their characteristic feature mentioned in Column-II.

Column-I

Column-II

- (A) simple cubic and face centred cubic
- (P) have these cell parameters
 - $a = b = c \& \alpha = \beta = \gamma$
- (B) cubic and rhombohedral
- (Q) are two crystal systems
- (C) cubic and tetragonal
- (R) have only two crystallographic angles of 90°
- (D) hexagonal and monoclinic
- (S) belong to same crystal system

- Q. 15 CsBr has cubic structure with edge length 4.3. The shortest inter ionic distance in between Cs⁺ & Br⁻ is (A) 3.72 (B) 1.86 (C) 7.44 (D) 4.3
- Q.16 In the sodium chloride structure, each Na⁺ ion is surrounded by six Cl⁻ ions nearest neighbours and Na⁺ ion next nearest neighbours –
- Q.17 The coordination number of a metal crystallized in a hexagonal close packed structure is (A) 12 (B) 4 (C) 8 (D) 6

(C) 6

(D) 12

(B) 8

- Q.18 A metallic element crystallizes into a lattice containing sequence of layers of ABABAB....... This packing of sphere leaves out voids in the lattice. What percentage by volume of this space is empty space?
- Q.19 Chromium metal crystallizes with a body centered cubic lattice. The length of the unit cell is found to be 287 pm. Calculate the atomic radius. What would be the density of chromium in g/cm³?
- Q.20 A unit cell of sodium chloride has four formula units. The edge length of the unit cell is 0.564 nm. What is the density of sodium chloride?

 Q.21 A metal crystallizes into two cubic phases, face
- centered cubic (fcc) and body centered cubic (bcc), whose unit cell length are 3.5 and 3.0 Å, respectively. Calculate the ratio of density of fcc and bcc.
- Q.22 If an element (at. wt. = 50) crystallizes in fcc lattice, with a = 0.50 nm. What is the density of unit cell if it contains 0.25% schottky defects (use $N_A = 6 \times 10^{23}$)
 - (A) 2.0 g/cc

(A) 4

- (B) 2.66 g/cc
- (C) 3.06 g/cc
- (D) none of these
- Q.23 <u>Column-I</u> <u>Column-II</u>
 - (A) Spinel structure
- (i) ZnAl₂O₄
- (B) Glass
- (ii) Pseudo solid
- (C) 6: 6 Co-ordination
- (iii) NaCl type structure
- (D) Plastics
- (iv) Super cooled liquid
- 2.24 In fcc lattice, A, B, C, D atoms are arranged at corner, face centre, octahedral void and tetrahedral void respectively, then the body diagonal contains:
 - (A) 2A, C, 2D
- (B) 2A, 2B, 2C
- (C) 2A, 2B, D
- (D) 2A, 2D
- Q.25 The radius of Ag^+ ion is 126 pm while that of I^- ion is 216 pm. The co-ordination number of Ag in AgI is -
 - (A) 2
- (B) 4
- (C) 6
- (D) 8

			*	**		
7.	8.	9.	10.	11	12.	13.
D	Α	В	B,C	. D	117.1 Pm	217 Pm
14.		15. A				
16.	17.	18.	19.	20.	21.	22.
D	Α	25.6%	7.3 g/cm ³	2.16 g/cm ³	1.259	В
23.	$A \rightarrow$	(i); B → (ii), (iv); $C \rightarrow$ (iii); D → (ii),(iv)	24. A	25. C